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Abstract
We study the influence of network topology on retrieval properties of recurrent
neural networks, using replica techniques for dilute systems. The theory is
presented for a network with an arbitrary degree distribution p(k) and applied to
power-law distributions p(k) ∼ k−γ , i.e. to neural networks on scale-free graphs.
A bifurcation analysis identifies phase boundaries between the paramagnetic
phase and either a retrieval phase or a spin-glass phase. Using a population
dynamics algorithm, the retrieval overlap and spin-glass order parameters
may be calculated throughout the phase diagram. It is shown that there is
an enhancement of the retrieval properties compared with a Poissonian random
graph. We compare our findings with simulations.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

The impressive ability of human and animal brains to recognize and manipulate complex
patterns under real-world (i.e. noisy and often conflicting) conditions continues to appeal not
only to biologists but also to physicists, computer scientists and engineers, albeit with the latter
driven by different objectives and motivations. Hopfield [1] was one of the first to introduce a
simple model to describe associative memory in recurrent neural networks successfully, based
on the biologically motivated Hebbian rule for adapting the connections between the neurons
(the ‘synapses’). His model initiated a period of intense research activity. The success of these
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early neural network models was mainly due to their analytic tractability, which was achieved
upon sacrificing biological realism; all neurological connectivity structures were sacrificed by
the first generation of (fully connected) models. However, the research area was thereby able
to benefit significantly from recent advances in mean-field spin-glass (SG) theory [2, 3], and
many new results were published in the second half of the 1980s; see e.g. [4–6] or [7].

A step towards increased biological realism was made by the introduction of diluted neural
network models. Initially, in the thermodynamic limit, each neuron was on average connected
to a vanishing fraction of the system, but this fraction contained an infinite number of nodes.
These models were solvable by virtue of the specific nature of their architectures: one either
chooses strictly symmetric dilution (so that detailed balance and hence equilibrium analysis
are preserved, e.g. [9–11]), or strictly asymmetric dilution, which ensures that neuron states
are statistically independent on finite times [8] (now the local fields are described by Gaussian
distributions, leading to simple dynamic order parameter equations). In the early models,
the bond statistics were uniform over the entire network, leading to thin tails in its degree
distribution, whereas the connectivity of a real neuron is known to vary strongly within the
brain [12]. In response to this, there have been several recent studies of recurrent neural
network models with alternative connectivity distributions. Most evolve around numerical
simulations of Hopfield-type models on graphs with power-law degree distributions [13–16].
Examples of recent analytic work on recurrent neural networks with finite connectivity can
be found in [17, 18]; both deal with Poissonian graphs and apply the equilibrium statistical
mechanical techniques of dilute disordered spin systems [19–21].

The objective of this paper is to extend and generalize the solution for finitely connected
Poissonnian neural networks [17, 18] to recurrent neural networks with arbitrary degree
distribution, in the spirit of [22, 23] and within the replica-symmetric (RS) ansatz. We
derive analytically phase diagrams for networks with Hebbian synapses and arbitrary degree
distributions p(k), and apply population dynamics algorithms to obtain the values of the
order parameters in the three phases (namely paramagnetic (P), retrieval (R) and SG). This
study thereby establishes a connection between the equilibrium statistical mechanics of neural
networks and the theory of so-called ‘complex networks’. In line with biological reality, we
find that recurrent neural networks with degree distributions with ‘fat tails’ are indeed superior
to those with Poissonnian degree distributions, in terms of the size of the recall region in the
phase diagram.

2. Model definitions

Our model is a system of N Ising spin neurons σi ∈ {−1, 1}, with i = 1, . . . , N. The neurons
are located on the nodes of a graph with arbitrary degree distribution p(k) = N−1 ∑

i δk,ki
,

where ki denotes the number of neurons connected to neuron i. This system is assumed to be
in thermodynamic equilibrium, described by the Hamiltonian

H = −
N∑

i < j=1

σiJijσj −
p∑

µ=1

hµ

N∑
i=1

ξ
µ
i σi. (1)

Here the {hµ} represent generating fields and the vectors (ξ
µ
1 , . . . , ξµ

N) represent stored random
N-bit patterns. We will abbreviate the bits to be stored at a given node i as ξi = (ξ1

i , . . . , ξp

i ).
Since the number of connections per neuron is finite, the number of patterns p must be of order
O(N0). The bonds Jij depend on the patterns via

Jij = cij

〈k〉φ(ξi · ξj) (2)
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with ξi · ξj = ∑p

µ=1 ξ
µ
i ξ

µ
j and 〈k〉 = ∑

k�0 p(k)k. Special cases of interest are φ(x) = x,
namely Hebbian bonds, and φ(x) = sign(x), namely clipped Hebbian bonds.

The variables cij ∈ {0, 1} specify our graph microscopically; we extend their definition
to all pairs (i, j) by putting cij = cji and cii = 0. It is known from complex network theory
[24, 25] that a connectivity distribution p(k) alone does not fully specify the statistics of a
graph. Here we draw the matrix c = {cij}, which represents quenched disorder for the spin
system (1), randomly from the probability distribution

P(c) =
[∏

i < j P(cij)δcij ,cj i

] [∏
i δki,

∑
j �=i cij

]
∑

c′

[∏
i < j P(c′

ij)δc′
ij ,c′

j i

] [∏
i δki,

∑
j �=i c

′
ij

] (3)

with the single-bond probabilities

P(cij) = 〈k〉
N

δcij ,1 +
(

1 − 〈k〉
N

)
δcij ,0. (4)

These equations imply that the number of connections at each site i is constrained to the value
ki, but apart from this fact the connectivity matrix is maximally random. On average, each
connection cij = cji has probability 〈k〉/N of being equal to one and probability (1 − 〈k〉/N)

of being equal to zero. After introducing integral representations for the delta-constraints,
disorder averages 〈〈A(c)〉〉c over the ensemble of graphs are given by [22, 23]

〈〈A(c)〉〉c = N −1
∑

c

[ ∏
i < j

P(cij)δcij ,cj i

] [∏
i

∫
dψi

2π
eiψi(

∑
j cij−ki)

]
A(c), (5)

N =
∑

c

[ ∏
i < j

P(cij)δcij ,cj i

] [∏
i

∫
dψi

2π
eiψi(

∑
j cij−ki)

]
. (6)

Another statistical quantity to characterize graphs, beyond p(k), is the degree–degree
correlation: the joint probability ω(ki, kj) that a pair of nodes i and j are connected, and
have connectivities ki and kj , respectively. For the present ensemble (3) one finds

ω(ki, kj) = p(ki)p(kj)kikj

〈k〉N . (7)

When comparing our theory with simulations in section 5, care has to be taken that the generated
graphs are in accordance with (7).

3. Replica calculation of the free energy and order parameters

We calculate the free energy per spin and the relevant order parameters, using the replica
techniques as developed for constrained connectivity graphs, along the lines of [22, 23]. Thus
the asymptotic free energy per spin f = − limN→∞(βN)−1 log Z is written as

f = − lim
N→∞

lim
n→0

1

Nnβ
log〈〈Zn〉〉c, (8)

where Zn is the usual n-replicated partition function

Zn =
∑
σ1

· · ·
∑
σN

exp

β

n∑
α=1

∑
i < j

σα
i Jijσ

α
j + β

p∑
µ=1

hµ

N∑
i=1

n∑
α=1

ξ
µ
i σα

i

 (9)
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and σi ≡ (σ1
i , . . . , σn

i ) is the n-replicated spin at site i. Upon performing the trace over cij (i.e.
the disorder average) one obtains

〈〈Zn〉〉c = 1

N

N∏
i=1

∑
{σi}

∫
dψi

2π
e−iψiki

 exp

β

p∑
µ=1

hµ

N∑
i=1

n∑
α=1

ξ
µ
i σα

i



× exp

 〈k〉
2N

N∑
i,j=1

(ei(ψi+ψj)+ β

〈k〉 φ(ξi·ξj)σi·σj − 1) + O(N0)

 . (10)

In order to arrive at an effective single-site problem, one needs the concept of sublattices
Iξ = {i|ξi = ξ} [26]. The sublattices divide the whole network into classes of sites i sharing
the same pattern vector ξi. They are a necessary ingredient in the present analysis due to the
explicit site-dependence of the interaction values through the values of the pattern vectors.
This distinguishes neural network models from models with bond-disorder, like spin glasses.
One now defines the following order parameter functions:

Pξ(σ) = 1

|Iξ|
∑
i∈Iξ

eiψiδσ,σi
. (11)

These are reminiscent of the replicated spin probability distributions within sublattices, as
in [17], but here include extra phase factors eiψi whose effect is to replace ki by ki − 1
in expressions of the type (5). After applying saddle-point integration techniques in the
subsequent calculation, one finds as a result

Pξ(σ) = 1

|Iξ|
∑
i∈Iξ

〈〈〈δσ,σi
eiψi〉〉〉c (12)

with 〈· · ·〉 denoting a thermal average over the n-replicated spins. Indeed this involves a phase-
factor in an expression of the type (5), such that ki is replaced by ki −1 in the disorder average.
Thus the physical meaning of the order parameter (11) is the distribution of a replicated cavity
spin (a spin from which one connection is removed) in sublattice ξ (see [22]). After some
straightforward manipulations (factorization over sites, integration over the variables ψi, etc,
see also [23]) we find f = limn→0 extr{P ,P̂}f [{P , P̂}], where

f [{P , P̂}] = 〈k〉
βn

∑
σ

〈P̂ ξ(σ)Pξ(σ)〉ξ − 1

βn

∑
k

pk

〈
log

[∑
σ

eβh·ξ ∑n
α=1 σα P̂k

ξ(σ)

]〉
ξ

− 〈k〉
2βn

∑
σ,σ ′

〈〈Pξ(σ)Pξ′(σ ′)e(β/〈k〉)φ(ξ·ξ′)(σ·σ ′)〉〉ξ,ξ′ − 〈k〉
2βn

. (13)

This involves the sublattice averages 〈f(ξ)〉ξ = ∑
ξ p(ξ)f(ξ), with pξ = limN→∞ |Iξ|/N.

To find the extremum of the variational free energy (13), we vary the latter with respect to
{Pξ(σ), P̂ ξ(σ)}, leading to the saddle-point equations

P̂ ξ(σ) =
∑
σ ′

〈Pξ′(σ ′)e(β/〈k〉)φ(ξ·ξ′)(σ·σ ′)〉ξ′ , (14)

Pξ(σ) =
∑

k

kpk

〈k〉
eβh·ξ ∑n

α=1 σα P̂k−1
ξ (σ)∑

σ eβh·ξ ∑n
α=1 σα P̂k

ξ(σ)
. (15)
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As usual [20, 21, 27], one adopts the replica symmetric (RS) ansätze

Pξ(σ) =
∫

dh Wξ(h)
eβh

∑n
α=1 σα

[2 cosh(βh)]n
, (16)

P̂ ξ(σ) =
∫

du Qξ(u)
eβu

∑n
α=1 σα

[2 cosh(βu)]n
, (17)

which are invariant under permutations of replica indices. Inserting these into (15), one finds
the replica symmetric form of the saddle-point equations

Qξ(u) =
〈∫

dh Wξ′(h)δ

[
u − 1

β
tanh−1

[
tanh(βh) tanh

(
βφ(ξ · ξ′)

〈k〉
)]]〉

ξ′
(18)

Wξ(h) =
∑

k

kpk

〈k〉
∫ [

k−1∏
�=1

du� Qξ(u�)

]
δ

[
h −

k−1∑
�=1

u� −
p∑

µ=1

hµξµ

]
, (19)

where Wξ(h) and Qξ(u) are probability distributions for the effective cavity fields and
propagated fields (messages) in sublattice ξ, respectively [23]. Note that one could eliminate
equation (18) by insertion into (19). Substitution of (16) and (17) into (13) gives us the RS
free energy per spin:

βf = 〈k〉
〈∫

dh duWξ(h)Qξ(u) log [1 + tanh(βu) tanh(βh)]

〉
ξ

− 〈k〉
2

〈〈∫
dh dh′Wξ(h)Wξ′(h′) log

[
1 + tanh(βh) tanh(βh′) tanh

[
βφ(ξ · ξ′)

〈k〉
]]〉〉

ξ,ξ′

−
∑

k

pk

〈∫ [
k∏

�=1

du� Qξ(u�)

]
log

(
2 cosh(β

∑k
�=1 u� + β

∑p

µ=1 hµξµ)∏k
�=1 2 cosh(βu�)

)〉
ξ

− 〈k〉
2

〈〈
log cosh

[
βφ(ξ · ξ′)

〈k〉
]〉〉

ξ,ξ′
− 〈k〉 log 2. (20)

We may finally use the generating fields hµ to find explicit expressions for the disorder-averaged
pattern recall overlaps mµ = limN→∞ N−1 ∑

i ξ
µ
i 〈〈〈σi〉〉〉c = −(∂f/∂hµ)|h=0:

mµ =
∑

k

pk

〈
ξµ

∫ [
k∏

�=1

du� Qξ(u�)

]
tanh

(
β

k∑
�=1

u�

)〉
ξ

. (21)

In a similar manner, one may derive an expression for the disorder-averaged RS SG order
parameter q = limN→∞ N−1 ∑

i〈〈〈σi〉2〉〉c, upon adding a term of the form λ
∑

α<β σασβ to the
replicated Hamiltonian in (9). The result is

q =
∑

k

pk

〈∫ [
k∏

�=1

du� Qξ(ul)

]
tanh2

(
β

k∑
�=1

u�

)〉
ξ

. (22)

These expressions have a transparent interpretation, given that within the cavity formalism the
local magnetization at a site i is indeed given by mi = tanh(β

∑ki

�=1 u�).
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4. Phase diagram and order parameters

The P phase, where (21) and (22) are zero, has Wξ(x) = Qξ(x) = δ(x) for all ξ. The recall
phase (R) is defined by mµ �= 0 for some µ. In the SG phase, q > 0 but mµ = 0 for all µ.
Transitions away from the P phase are expected to be second order, allowing us to find the
P → (R, SG) transitions via a simple continuous bifurcation analysis. In contrast, locating
the SG → R transition requires knowledge of the (nontrivial) functions Wξ(h) and Qξ(u) in
the R or SG regimes; to find these transitions we will solve (18) and (19) numerically using a
population dynamics algorithm.

Following [17, 18] we apply a bifurcation analysis to compute the second-order transition
lines away from the P phase. By assuming the effective fields to be small, i.e.

∫
dh Wξ(h)h� =

O(ε�) for all ξ, and expanding equations (18) and (19) up to order ε2, one finds the following
bifurcation conditions for transitions away from P:

P → R:
∫

dh Wξ(h)h = 〈k2〉 − 〈k〉
〈k〉

〈
tanh

[
βφ(ξ · ξ′)

〈k〉
] ∫

dh Wξ′(h)h

〉
ξ′

, (23)

P → SG:
∫

dh Wξ(h)h2 = 〈k2〉 − 〈k〉
〈k〉

〈
tanh2

[
βφ(ξ · ξ′)

〈k〉
] ∫

dh Wξ′(h)h2

〉
ξ′

. (24)

For pξ = 2−p (random patterns) one can find the eigenvalues of the relevant (symmetric)
matrices

Mξξ′ = 2−p 〈k2〉 − 〈k〉
〈k〉 tanh

[
βφ(ξ · ξ′)

〈k〉
]

(25)

and

Qξξ′ = 2−p 〈k2〉 − 〈k〉
〈k〉 tanh2

[
βφ(ξ · ξ′)

〈k〉
]

(26)

by exploiting the fact that they only depend on the inner products ξ · ξ′ and the eigenvectors
are simultaneously the eigenvectors of a set of symmetry operators on the inner product. The
conditions for a second order transition become (see [17])

P → R:
〈k2〉 − 〈k〉

〈k〉
2−p

p

p∑
n=0

(
p

n

)
(p − 2n) tanh

[
βφ(p − 2n)

〈k〉
]

= 1, (27)

P → SG:
〈k2〉 − 〈k〉

〈k〉 2−p

p∑
n=0

(
p

n

)
tanh2

[
βφ(p − 2n)

〈k〉
]

= 1. (28)

For a Poissonian degree distribution, one has 〈k2〉 = 〈k〉2 + 〈k〉, and we recover the results in
[17]. For non-Poissonian distributions, equation (27) predicts an enlargement of the R phase
when the degree distribution has fat tails, e.g. for power-law distributions p(k) ∼ k−γ . As
noted by [23], if the second moment of the degree distribution is not finite (e.g. for power-law
distributions with γ � 3), so is the left-hand side of (27), implying that there is always a R
phase in the thermodynamic limit, for any temperature and any storage ratio. An appropriate
rescaling of the temperature β → β〈k2〉/〈k〉2 reveals that the R transition comes before the SG
transition in this regime (i.e. there is no SG phase), as long as 〈k〉 does not diverge (as long as,
e.g., γ > 2 for power-law distributions). For a single pattern, the R phase boundary is given,
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in accordance with [23], by

βc = −〈k〉
2

log

(
1 − 2〈k〉

〈k2〉
)

(29)

(our expression differs slightly, due to our rescaling of the bonds by a factor 〈k〉−1).
To find our order parameters, we solve equations (18) and (19) numerically, using a

population dynamics algorithm [28, 29]. We have two distributions for each of our 2p

sublattices, so the required CPU time grows exponentially with p. However, one may exploit
sublattice symmetries, especially when the system is condensed in a single pattern retrieval
state [30]. If the first pattern is condensed, numerical and analytical evidence (as yet short of a
proof) suggests the solution of (18) and (19) to have Wξ(h) = Wξ1(h). Moreover, for random
patterns one expects the symmetry Wξ1(h) = W(ξ1h). Insertion of this ansatz (and a similar
one for Qξ) into (18) and (19) leads us to

W(h) =
∑

k

kpk

〈k〉
∫ [

k−1∏
�=1

du� Q(u�)

]
δ

[
h −

k−1∑
�=1

u�

]
, (30)

Q(u) = 1

2p−1

p−1∑
n=0

(
p − 1

n

) ∫
dh W(h)δ

[
u − 1

β
tanh−1

[
tanh(βh) tanh

(
βφ(p − 2n)

〈k〉
)]]

.

(31)

Inserting (31) into (30) then gives the relatively simple expression

W(h) =
∑

k

kpk

〈k〉
k−1∏
�=1

[
1

2p−1

p−1∑
n�=0

(
p − 1

nl

) ∫
dh� W(h�)

]

× δ

{
h − 1

β

k−1∑
�=1

tanh−1

[
tanh(βh�) tanh

[
βφ(p − 2n�)

〈k〉
]]}

. (32)

5. Comparison with simulations

In figure 1 we present the resulting RS phase diagrams in the (α, T )-plane, where α = p/〈k〉
for Hopfield-type networks with power-law degree distribution p(k) ∼ k−γ . The distributions
p(k) are characterized by γ = 3.1 and 4 respectively, and by a variable K which defines a lower
cutoff (p(k) = 0 for k < K). Notice that the phase diagrams are calculated for low values
of the average connectivity 〈k〉 (see caption to figure 1), even though in biological networks
〈k〉 is of the order 100–1000. Our choice is made for numerical convenience only, although
the differences between small and large values of 〈k〉 will be only quantitative. At high T one
finds the P phase. At sufficiently low T one finds a R phase (small α) or a SG phase (large α).
The value γ = 3.1 is close to the critical value γc = 3 below which there is no P phase, yet
here the phase diagram is found to be qualitatively similar to that corresponding to Poissonian
graphs [17] (with re-scaled values of T and α). In the γ = 4 phase diagram we also indicate
the location of the R → SG transition, resulting from a population dynamics calculation. The
P → R and P → SG boundaries were found by solving the bifurcation equations (27) and
(28) numerically. For small values of the order parameters, i.e. large T or α, finding accurate
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R

Figure 1. RS phase diagrams for p(k) ∼ k−γ with p(k) = 0 for k < K and γ = 3.1 (left) and 4
(right). Phase boundaries found by bifurcation analysis, separating P from R and SG phases. For
γ = 4 the R → SG phase boundary is calculated for T values which are multiples of 0.2, and
is found via population dynamics (with a condensed ansatz). For γ = 3.1, average connectivity
values corresponding to K = 1 (circles), 2 (squares) and 3 (diamonds) are 〈k〉 = 1.318, 3.055 and
4.898 respectively. For γ = 4, average connectivity values corresponding to K = 2 (circles), 3
(squares) and 4 (diamonds) are 〈k〉 = 2.454, 3.887 and 5.352 respectively.

numerical values for the order parameters becomes increasingly difficult. Hence, for large
fluctuations in the connectivity (i.e. large values of 〈k2〉), one cannot expect accurate results
for the R → SG transition on the basis of a population dynamics algorithm. This is why we
have omitted the R → SG line in the γ = 3.1 phase diagram.

The overall picture supports the findings in numerical studies [13–16], namely that the
more fat-tailed the connectivity distribution, the larger the R regime in the phase diagram. The
networks are more robust against noise (the critical temperature is enlarged) and a larger number
of patterns can in principle be retrieved. The reason, pointed out in the above-mentioned
literature, is that the ‘hubs’ in the network (i.e. nodes with a high degree of connectivity)
are capable of maintaining order in the network in more noisy circumstances, and induce a
nonvanishing contribution to the retrieval order parameter. Fat-tailed distributions (relatively
small γ) obviously result in more and larger hubs. The literature however also points out
that, although the R regime is enlarged for some scale-free networks, the value of the retrieval
overlap is smaller in a large part of the R regime, than in the case of a Poissonian degree
distribution.

In figure 2 we show as a function of temperature the recall overlap m1 (for states where
only pattern 1 is condensed) as obtained from a population dynamics calculation, together with
the measurements of m1 in numerical simulations. Both simulation and population dynamics
had N = 104 corresponding to system size and population size, respectively, and all data are
averages over 10 runs.

To compare our theory with simulations we must first generate a scale-free network. A
convenient and fast way to produce it, is to use the celebrated Barabasi–Albert algorithm for
network growth [31, 32], which results in an exponent γ = 3.0. The left-hand figure refers
to p(k) ∼ [k(k + 1)(k + 2)]−1, corresponding to the degree distribution resulting from this
algorithm. It should be noted, however, that the degree–degree correlation generated by the
latter algorithm differs from the one (7) in our present model (see e.g. [24]). Consequently, a
different algorithm, similar to the one described in [25], had to be used here, and we could not
test our results directly by comparison to other simulation results in the literature. First, a set
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Figure 2. Condensed recall overlap m1 as calculated from our RS theory via population dynamics
(squares) versus numerical simulations (circles), for a graph with p(k) ∼ [k(k + 1)(k + 2)]−1

(left), and a graph with p(k) ∼ k−3 (right), both with p(k) = 0 for k < 3. The corresponding
average connectivities are 〈k〉 = 6 (left) and 〈k〉 = 5.123 (right). All data shown are averages over
10 runs, in both simulations (N = 104 spins) and in population dynamics (with populations of size
N = 104).

{k1, . . . , kN} is generated in accordance with the distribution p(k). One then chooses randomly
two sites i and j with probabilities p(i) = ki/

∑
j kj ∼ p(ki)ki. Unless these two sites coincide

or already share a bond, they are connected. If site i already has ki connections, it is excluded
from the process to speed up the algorithm. This process is repeated until all connectivities
have the correct value. We also used this algorithm to generate power-law distributed graphs
with γ = 3 (right-hand figure). For both architectures, the overlaps m1 have been plotted for
networks with p = 1, 3 and 5. At low temperature, the results of the simulation agree well with
the population dynamics results. For the values of p used in figure 2 one has pattern retrieval
at sufficiently low temperatures. In fact, our theory claims that for p(k) ∼ k−γ with γ � 3
one will have retrieval at any T . For large values of p and T , however, the overlaps, although
indeed nonzero, become smaller and hence our numerical accuracy decreases. Moreover, the
equilibration times in the simulations grow rapidly as p increases. The discrepancies at high
temperatures and large p are, we believe, due to finite-size effects. In figure 3 we show that
the agreement between theory and simulations indeed improves for larger system sizes.

6. Conclusions

We have solved attractor neural network models on random graphs with arbitrary connectivity
distributions p(k), using the replica method within the RS ansatz, in the spirit of [17, 22, 23].
The RS order parameters are the effective cavity field distributions Wξ(h) in each sublattice,
or equivalently, the distributions of messages Qξ(u). Second-order phase transitions from
the P phase to a R or SG phase could be derived explicitly, given the assumption that these
transitions are second order and provided the second moment 〈k2〉 of the connectivity degree
distribution of the graph is finite. The overlap and SG order parameters in each phase can in
principle be calculated via a population dynamics algorithm. The latter is limited by numerical
accuracy when the values of these order parameters are small (as for large T and α). We find
that the retrieval region in the phase diagram is larger for fat-tailed degree distributions than
for those with exponential decay (e.g. Poissonian), but it is not clear whether this can be
exploited in associative memories since it goes at the cost of the magnitude of the retrieval
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Figure 3. Average retrieval overlap m1 over 10 simulations as a function of system size N, for
connectivity degree distribution p(k) ∼ k−3 (with p(k) = 0 for k < 3, at T = 1 and p = 5). The
dotted line corresponds to the value predicted by our RS population dynamics.

overlaps. The possible occurrence of replica symmetry breaking is beyond the scope of this
paper. Within our numerical accuracy, we can conclude that upon comparing the results of our
replica symmetric theory (including population dynamics) to numerical simulations, for degree
distributions p(k) ∼ [k(k + 1)(k + 2)]−1 and p(k) ∼ k−γ , we obtain satisfactory agreement.
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